Abstract

Concentrating sugar solutions is a common process used in the production of many food products for either dewatering a high value product or concentrating waste streams prior to disposal. Thermal and pressure-driven dewatering methods are widely used, but they are prohibitively energy intensive and hence, expensive. Osmotically driven membrane processes, like forward osmosis, may be a viable and sustainable alternative to these current technologies. Using NaCl as a surrogate draw solution, this investigation shows that forward osmosis processes can lead to sucrose concentration factors that far exceed current pressure-driven membrane technologies, such as reverse osmosis. For instance, a concentration factor of 5.7 was achieved by forward osmosis with a starting sucrose concentration of 0.29 M, compared to reported concentration factors of up to 2.5 with reverse osmosis. Water fluxes were found to be lower than those commonly obtained in reverse osmosis, which is a consequence of the significantly higher concentration factors in conjunction with internal concentration polarization. The latter is a common problem in forward osmosis processes that utilize current generation anisotropic polymeric membranes. Further advances in forward osmosis membrane technology would yield higher water fluxes and concentration factors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.