Abstract

Real-time orbit determination (RTOD) for spacecraft using the space-borne GNSS technique needs earth orientation parameters (EOPs) for the required coordinate transformation between earth-fixed and inertial reference frames. GPS and BDS transmit EOPs in modernized navigation messages, which enables GNSS-equipped spacecraft to update EOPs onboard and improves the RTOD automaticity. However, the impact of broadcast EOP errors on RTOD has not yet been evaluated. With the GPS and BDS-3 observations collected from a Chinese low-earth orbit (LEO) mission, the LUTAN-01B satellite, we analyze the LEO RTOD performance with broadcast EOPs and GPS/BDS-3 combination for the first time. In RTOD, we parameterize the ephemeris signal-in-space range error (SISRE) to account for its slow-varying signature and to compensate for the EOP errors. Without estimating SISRE, the RTOD precision using broadcast EOPs is 70.1 cm with only GPS observations and 42.4 cm with only BDS-3, revealing degradations of 5.1 cm (7.8%) and 3.3 cm (8.4%) compared to those using the precise C04 EOPs, respectively. With SISRE estimated, the impact of broadcast EOP error is compensated and the RTOD precisions with broadcast EOPs show identical results to those with C04, reaching 36.3 cm with GPS and 25.8 cm with BDS-3. Combining GPS and BDS-3 further improves the RTOD precision to 23.9 cm. Furthermore, we show that the RTOD precision can be further improved by using GPS and BDS broadcast EOPs’ differences to correct ephemeris rotation errors. With this correction, the precision improvement of BDS-3 independent and GPS/BDS-3 combined RTOD increases significantly when BDS-3 broadcast EOPs suffer large errors due to long update intervals. During the experiment period, their maximum orbital improvements reach 10.2 and 7.7 cm, respectively, while the average improvements are both around 1.5 cm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.