Abstract

In algorithm-based fault tolerance (ABFT), fault tolerance is tailored to the algorithm performed. Most of the previous studies that compared ABFT schemes considered only error detection and correction capabilities. Some previous studies looked at the overhead but no previous work compared different recovery schemes for data processing applications considering throughput as the main metric. We compare the performance of two recovery schemes: recomputing and ABFT correction, for different error rates. We consider errors that occur during computation as well as those that occur during error detection, location and correction processes. A metric for performance evaluation of different design alternatives is defined. Results show that multiple error correction using ABFT has poorer performance than single error correction even at high error rates. We also present, implement and evaluate early detection in ABFT. In early detection, we try to detect the errors that occur in the checksum calculation before starting the actual computation. Early detection improves throughput in cases of intensive computations and cases of high error rates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.