Abstract

AbstractBACKGROUNDCommercial TiO2 nanoparticles were subjected to modification through Bi and Zn metal doping. The resulting catalysts were comprehensively characterized, and their performance was then reviewed for removal of model pollutant nitrobenzene in water.RESULTSAmidst the synthesized catalysts, the co‐doping of Bi/Zn (0.25:0.75 wt%) demonstrated the best photocatalytic degradation activity, achieving 95% degradation within 90 min of reaction time, with 2.99 × 10−2 min−1 rate constant value. The involvement of different radicals during the degradation process was elucidated by employing appropriate radical scavengers. Furthermore, the degradation results were investigated applying the first‐order kinetic model, leading to the determination of reaction rate constants and initial rates of the degradation process.CONCLUSIONAn improved photocatalytic activity was observed with metal doping due to the synergistic effect of doped metals with commercial TiO2 and profound charge transfer among them. It was observed that performance was increased with temperature rise in the practical range of application, that is, 5–20 °C. This behavior was due to high rate of movement of charge carriers. Further, involvement and functioning of various radical species such as h+, OH− and O2− in nitrobenzene degradation were successfully established using appropriate radical scavengers. © 2024 Society of Chemical Industry (SCI).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.