Abstract

The conventional microchannel plate (MCP) detector has found widespread application in various fields. This article focuses on investigating the performance of a single MCP with a large length-to-diameter ratio (L/D) of 80:1, particularly for single electron counting. To enhance MCP performance, alumina with a high secondary electron yield (SEY) is coated onto the MCP using atomic layer deposition (ALD). The SEYs of alumina thin films with different thicknesses are measured using a pulsing electron beam method. The 80:1 L/D MCPs operate in electron counting mode, and the optimal alumina thickness is determined through a comparative study of MCP performance before and after coating. The relationships between maximum SEY, primary electron energy, gain, peak-to-valley ratio (P/V), and pulse height resolution (PHR) are analyzed. After alumina coating, the single 80:1 MCP exhibits improved gain, P/V and PHR. The optimal P/V and PHR of a single MCP as functions of the primary electron energy align with the relationship between the SEY of the alumina coating and the primary electron energy. Additionally, the variation of DC gain with extracted charge is investigated. This article provides valuable insights for parameter selection in achieving the optimal working state of MCP and explores the potential application of single electron counting using a single MCP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.