Abstract

This paper develops an integrated navigation method based on the X-ray pulsar navigation (XNAV) system and an autonomous optical navigation system for spacecrafts. The X-ray pulsar navigation is implemented by using the difference between the measured and predicated pulse arrival time, which is calculated by comparing an observed pulse profile with a standard pulse profile. A problem arises from the X-ray signal processing in that the spacecraft’s orbit information, which may be unknown, is required to construct the observed pulse profile. The effect of the spacecraft orbit error on the accuracy of the pulse TOA (time of arrival) difference determination is analyzed. It is specified that the performance of the XNAV system may be degraded in the presence of large orbit error. In order to improve the navigation accuracy, an integrated navigation scheme is presented by fusing the measurement information of a X-ray detector and an ultraviolet optical sensor. The XNAV/optical integrated navigation system is effective to mitigate the effect of the spacecraft orbit error. The superiority of the presented scheme is illustrated through numerical simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.