Abstract
We here show that an effective blocking layer for dye-sensitized solar cells (DSSCs) can be formed by spin coating a commercial TiO2 paste onto a conducting glass substrate. The spin-coated TiO2 layer was made more compact than the main absorption layer by TiCl4 treatment. DSSCs employing a compact layer exhibited an average current density and an efficiency of 19.09 mA/cm2 and 9.10%, respectively, while 16.91 mA/cm2 and 8.33% were obtained from unblocked reference cells. The enhanced DSSC performance is attributed to the increased electron lifetime. Intensity-modulated photovoltage spectroscopy and open-circuit voltage decay analysis showed that a TiCl4-treated compact layer substantially suppresses the charge recombination at the TiO2/substrate interface, thereby increasing the electron lifetime.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.