Abstract

In recent years, more efforts have been made to improve new and more efficient nonmembrane-based methods for water desalination. Capacitive deionization (CDI), a novel technique for water desalination using an electric field to adsorb ions from a solution to a high-porous media, has the capability to recover a fraction of the energy consumed for the desalination during the regeneration process, which happens to be its most prominent characteristic among other desalination methods. This paper introduces a new desalination method that aims at improving the performance of traditional CDI systems. The proposed process consists of an array of CDI cells connected in series with buffer containers in between them. Each buffer serves two purposes: (1) averaging the outlet solution from the preceding cell and (2) securing a continuous water supply to the following cell. Initial evaluation of the proposed CDI system architecture was made by comparing a two-cell-one-buffer assembly with a two cascaded cells array. Concentration of the intermediate solution buffer was the minimum averaged concentration attained at the outlet of the first CDI cell, under a steady-state condition. The obtained results show that the proposed CDI system with intermediate solution had better performance in terms of desalination percentage. This publication opens new opportunities to improve the performance of CDI systems and implement this technology on industrial applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.