Abstract

An energy discriminating x-ray detector has been developed for dual-energy, scan projection digital radiography. The detector is comprised of a pair of x-ray intensifying screen/linear photodiode arrays, aligned one behind the other. Energy discrimination is achieved by employing a low atomic number phosphor in the front screen and a high atomic number phosphor in the back screen. The x-ray response, modulation transfer function, and defective quantum efficiency of the detector are reported along with the experimental methodology utilized for the measurements. Also presented is an analysis which indicates that in a typical patient's lung field, the detector can resolve the projected density (g/cm2) of a 3-mm-thick, 1-cm2 area of bone to better than 1.5%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.