Abstract
Automatic characterisation and detection of dirt particles in pulp and paper plays a pivotal role in the papermaking industry. Machine vision provides many potential advantages in terms of speed, accuracy and repeatability. Such systems make use of image processing algorithms which aim at separating paper and pulp impurities from the background. The most common approach is based on image thresholding, which consists of determining a set of intensity values that split an image into one or more classes, each representing either the background (i.e., an area with no defects) or an area with some types of contraries. In this paper, we present a quantitative experimental evaluation of four image thresholding methods (i.e., Otsu’s, Kapur’s, Kittler’s and Yen’s) for dirt analysis in paper. The results show that Kittler’s method is the most stable and reliable for this task.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Service and Computing Oriented Manufacturing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.