Abstract

Although many novel multi-amine solvents with high CO2 solubility were reported, they have not yet been evaluated for the performance in CO2 absorption processes. In this study, the efficiency and inside profile of the packed-column CO2 absorption process using a novel multi-amine solvent were investigated by using a mathematical model. Three amine solvents were selected: 2-(2-aminoethylamino)-ethanol (AEEA) and diethylenetriamine (DETA) as multi-amine solvents and monoethanolamine (MEA) as a reference. Based on the 90% capture efficiency of flue gas CO2 from a coal-fired power plant, a sensitivity analysis using the liquid-to-gas ratio was conducted to minimize the energy consumption for CO2 capture. Based on the utilization of the same 30 wt% solvent, the lowest reboiler thermal energy achieved by the process using DETA was 3.242 GJ/tonCO2, which was 8.57% lower than that obtained when MEA was employed. In contrast, the process using AEEA required 7.04% higher energy than MEA. In the process modified by rich-solvent split for further enhancing efficiency, the DETA process could achieve 2.962 GJ/tonCO2, which reduced the reboiler duty by 16.8% from the MEA process. The CO2 capture performance of absorbents could not be evaluated not only by the absorption rate and capacity. Owing to the larger molecular weight of multi-amines than MEA, the performance of capture and regeneration was discussed with respect to the amine properties and number of amine moles in the solution. A well-selected multi-amine for a modified process configuration has considerable potential for improving the energy efficiency of CO2 capture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.