Abstract

The multistage bio-contact oxidation reactor (BCOR) is a widely used biological strategy to treat wastewater, however, little is known about the performance and microbial community information of BCOR during the treatment of low-COD and high-salinity oilfield produced water. In this study, the performance of a multistage BCOR in treating produced water was investigated. The result suggested the BCOR could efficiently remove COD, BOD5, NH4+-N, and oil pollutants. Besides, high-throughput sequencing analysis revealed that oil content was the main variable in shaping the community structure. The highest total relative abundance of potential pollutants degraders in first BCOR stage suggested significant role of this stage in pollutants removal. In addition, the correlation analysis disclosed the key functional genera during the degradation process, including Rhodobacter, Citreibacter, and Roseovarius. Moreover, network analysis revealed that the microbial taxa within same module had strong ecological linkages and specific functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.