Abstract

Cloud computing enables remote execution of users’ tasks. The pervasive adoption of cloud computing in smart cities’ services and applications requires timely execution of tasks adhering to Quality of Services (QoS). However, the increasing use of computing servers exacerbates the issues of high energy consumption, operating costs, and environmental pollution. Maximizing the performance and minimizing the energy in the cloud data center is challenging. In this paper, we propose a performance and energy optimization bi-objective algorithm to trade off the contradicting performance and energy objectives. An evolutionary algorithm-based multi-objective optimization is for the first time proposed using system performance counters. The performance of the proposed model is evaluated using a realistic cloud dataset in a cloud computing environment. Our experimental results achieve higher performance and lower energy consumption compared to a state-of-the-art algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.