Abstract

A steady-state theory that describes the performance of a cw off-resonant Raman laser is presented. The cw Raman laser is constructed in a nonconfocal high-finesse cavity that allows for high Raman gain with low pump powers. Threshold values of the pump laser used to pump the cw Raman laser are predicted to be as low as 1 mW. The maximum photon-conversion efficiency for the cw Raman laser is predicted to be 50%. The theory is compared with experimental results from a cw Raman laser that operates with a pump wavelength of 532 nm and a Stokes-shifted wavelength of 683 nm. A threshold pump power of 2 mW and a maximum photon-conversion efficiency of 34%±6% was measured. With the mirrors used in the experiment, these values correspond to the predictions from the steady-state cw Raman laser theory. The theoretical model is then used to design cw Raman lasers operate near the maximum conversion efficiency in the 1–4-μm wavelength region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.