Abstract
AbstractSelecting which program transformations to apply when mapping computations to FPGA-based architectures leads to prohibitively long design exploration cycles. An alternative is to develop fast, yet accurate, performance and area models to understand the impact and interaction of the transformations. In this paper we present a combined analytical performance and area modeling for complete FPGA designs in the presence of loop transformations. Our approach takes into account the impact of input/output memory bandwidth and memory interface resources, often the limiting factor in the effective implementation of these computations. Our preliminary results reveal that our modeling is very accurate allowing a compiler tool to quickly explore a very large design space resulting in the selection of a feasible high-performance design.KeywordsMemory AccessArea ModelingLoop NestSynthesis ToolFPGA DeviceThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.