Abstract

An algorithm is presented to obtain the total least squares (TLS) estimates of the motion parameters of an object from range/stereo data or perspective views in a closed form. TLS estimates are suitable when data in both time frames are corrupted by noise, which is an appropriate model for motion analysis in practice. The robustness of different linear least squares methods is analyzed for the estimation of motion parameters against the sensor noise and possible mismatches in establishing object feature point correspondence. As the errors in point correspondence increase, the performance of an ordinary least squares (LS) estimator was found to deteriorate much faster than that of the TLS estimator. The Cramer-Rao lower bound (CRLB) of the error covariance matrix was derived for the TLS model under the assumption of uncorrelated additive Gaussian noise. The CRLB for the TLS model is shown to be always higher than that for the LS model. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.