Abstract

Abstract : The calculated performance of a slowed-rotor compound aircraft, particularly at high flight speeds, is examined. Correlation of calculated and measured performance is presented for a NASA Langley high advance ratio test and the McDonnell XV-1 demonstrator to establish the capability to model rotors in such flight conditions. The predicted performance of a slowed-rotor vehicle model based on the CarterCopter Technology Demonstrator is examined in detail. An isolated rotor model and a model of a rotor and wing are considered. Three tip speeds and a range of collective pitch settings are investigated. A tip Mach number of 0.2 and zero collective pitch are found to be the optimum condition to minimize rotor drag. Performance is examined for both sea level and cruise altitude conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.