Abstract

The performance of a multi-computer system based on the simultaneous optical multi-processor exchange bus (SOME-Bus) interconnection network is examined using queuing network models under the message-passing and distributed-shared-memory (DSM) paradigms. The SOME-Bus is a low latency, high bandwidth, fiber-optic interconnection network which directly links arbitrary pairs of processor nodes without contention. It contains a dedicated channel for the data output of each node, eliminating the need for global arbitration and providing bandwidth that scales directly with the number of nodes in the system. Each of N nodes has an array of receivers, with one receiver dedicated to each node output channel. No node is ever blocked from transmitting by another transmitter or due to contention for shared switching logic. The entire N-receiver array can be integrated on a single chip at a comparatively minor cost resulting in O( N) complexity. By supporting multiple simultaneous broadcasts of messages, the SOME-Bus has much more functionality than a crossbar, allowing synchronization phases and cache consistency protocols to complete much faster. Simulation results are presented which validate the theoretical results and compare processor utilization in the SOME-Bus, the crossbar and the torus, with and without synchronization. Compared to these two networks, the SOME-Bus performance is least affected by large message communication times. Even in the presence of frequent synchronization, processor utilization remains practically unaffected while it drops in the other architectures. Although it has a larger number of channels compared to the crossbar and the mesh, the SOME-Bus is much simpler and inexpensive because it is free of complex routing, congestion and blocking.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.