Abstract

NH3/CO2 cascade refrigeration systems have a wide application prospect in the field of refrigeration, and using efficient centrifugal compressors is an important research direction. Considering the complex regulation process under various operating conditions, using centrifugal compressors for the low-temperature stage first is a feasible solution. In this paper, a mathematical model of a CO2 centrifugal compressor with gas bearing is established, and its performance is obtained through simulation. The CO2 centrifugal compressor shows good performance, and the maximum isentropic efficiency is about 84.5%. The refrigerating capacity, cooling motor mass flow rate, exergy efficiency, and isentropic efficiency of compressor decrease with the intermediate temperature, but the maximum COP of 1.46 is obtained. As the condensing temperature increases, the isentropic efficiency of the CO2 compressor increases, but the maximum COP, exergy efficiency, cooling motor mass flow rate, and refrigeration capacity decrease. The higher COP and intermediate temperature, larger refrigeration capacity and mass flow rate for motor cooling are shown for the larger evaporating temperature, but the low exergy efficiency, isentropic efficiency of CO2 compressor are obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.