Abstract

In this paper, we describe a reliability model which can be used to analyze the performance and power consumption in resource constrained, data rate scarce, mobile agent-based wireless sensor network (WSN) systems. The primary model is referred to as a generalize access structure congestion (GGC) system which is an extended model from a circular sequential k-out-of-n congestion (CSknC). There are many other reliability models which can be used to study WSN systems, but they are not suitable to analyze and address mobile agent-based multisensory WSN systems. These systems are not based on a centralized architecture because they use mobile agent technologies to distribute decision tasks at local nodes. By employing mobile agent technologies, the systems can make accurate decisions quickly and reduce data rate and data redundancy problems. An important research problem is to determine how to maintain efficient duty cycle by using multiple types of sensors without centralized architecture and with mobile agent technologies. From the GGC model, we can develop a method to determine an optimal power management scheme by computing an efficient duty cycle in mobile agent-based multisensory WSN systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.