Abstract
Using modern graphics processing units for no-graphics high performance computing is motivated by their enhanced programmability, attractive cost/performance ratio and incredible growth in speed. Although the pipeline of a modern graphics processing unit (GPU) permits high throughput and more concurrency, they bring more complexities in analyzing the performance of GPU-based applications. In this paper, we identify factors that determine performance of GPU-based applications. We then classify them into three categories: data-linear, data-constant and computation-dependent. According to the characteristics of these factors, we propose a performance model for each factor. These models are then used to predict the performance of bio-sequence database scanning application on GPUs. Theoretical analyses and measurements show that our models can achieve precise performance predictions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.