Abstract

We theoretically analyze the performance of coherent ultrashort light pulse code-division multiple-access (CDMA) communication systems with a nonlinear optical thresholder. The coherent ultrashort light pulse CDMA is a promising system for an optical local area network (LAN) due to its advantages of asynchronous transmission, high information security, multiple access capability, and optical processing. The nonlinear optical thresholder is based on frequency chirping induced by self-phase modulation (SPM) in optical fiber, and discriminates an ultrashort pulse from multiple access interference (MAI) with picosecond duration. The numerical results show that the thermal noise caused in a photodetector dominates the bit error rate (BER). BER decreases as the fiber length in the nonlinear thresholder and the photocurrent difference in the photodetector increase. Using the nonlinear optical thresholder allows for the response time of the photodetector to be at least 100 times the duration of the ultrashort pulses. We also show that the optimum cut-off frequency at the nonlinear thresholder to achieve the minimum BER increases with fiber length, the total number of users, and the load resistance in the photodetector.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.