Abstract

Grid connected converters commonly use LCL filters for harmonic content suppression. However, associated with such filters is a resonant frequency at which the gain value increases significantly. To mitigate this problem, a notch filter is introduced into the current control loop of the converter. When tuned to the LCL resonant frequency, it introduces an opposing notch, thereby neutralizing the resonance effect. To ensure robustness of the control system, the notch filter must be made adaptive. This will ensure any variation in the resonant frequency, either due to a change in grid impedance or aging of components, can be tracked accurately. This paper provides two novel methods of online tuning for the adaptive notch filter using grid impedance estimation and discrete Fourier transform (DFT) techniques. Simulation results show that both methods are capable of fast and accurate detection of the resonant frequency, for varying strengths of the grid.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.