Abstract

Thermodynamic optimizations based on the maximum power and maximum power density criteria have been performed for a solar-driven heat engine with external irreversibilities. In the analysis, it is assumed that the heat transfer from the hot reservoir is to be in the radiation mode and the heat transfer to the cold reservoir is to be in the convection mode. The power and power density functions have been derived, and maximization of these functions has been performed for various design parameters. The obtained results for the maximum power and power density conditions have been compared.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.