Abstract

This paper presents a performance analysis of two recently proposed distributed localization algorithms for cooperative 3-D wireless sensor networks (WSNs) in a more realistic scenario. The tested algorithms rely on distance and angle measurements obtained from received signal strength (RSS) and angle-of arrival (AoA) information, respectively. The measurements are then used to derive a convex estimator, based on second order cone programming (SOCP) relaxation techniques, and a non-convex one that can be formulated as a generalized trust region sub-problem (GTRS). Both estimators have shown excellent performance assuming a static network scenario, giving accurate location estimates in addition to converging in few iterations. Here, we test their performance considering different probabilities of communication failure between neighbour nodes at the broadcast phase. Our simulations show that their performance holds for high probability of communication failure and that convergence is still achieved in a reasonable number of iterations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.