Abstract

The optical resonance problem is similar to but different from time-steady Schr\"{o}dinger equation. One big challenge is that the eigenfunctions in resonance problem is exponentially growing. We give physical explanation to this boundary condition and introduce perfectly matched layer (PML) method to transform eigenfunctions from exponential-growth to exponential-decay. Based on the complex stretching technique, we construct a non-Hermitian Hamiltonian for the optical resonance problem. We successfully validate the effectiveness of the Hamiltonian by calculate its eigenvalues in the circular cavity and compare with the analytical results. We also use the proposed Hamiltonian to investigate the mode evolution around exceptional points in the quad-cosine cavity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.