Abstract
An important step toward understanding gene regulation is the elucidation of the time necessary for the completion of individual steps. Measurement of reaction rates can reveal potential nodes for regulation. For example, measurements of in vivo transcription elongation rates reveal regulation by DNA sequence, gene architecture, and chromatin. Pre-mRNA splicing is regulated by transcription elongation rates and vice versa, yet the rates of RNA processing reactions remain largely elusive. Since the 1980s, numerous model systems and approaches have been used to determine the precise timing of splicing in vivo. Because splicing can be co-transcriptional, the position of Pol II when splicing is detected has been used as a proxy for time by some investigators. In addition to these 'distance-based' measurements, 'time-based' measurements have been possible through live cell imaging, metabolic labeling of RNA, and gene induction. Yet splicing rates can be convolved by the time it takes for transcription, spliceosome assembly and spliceosome disassembly. The variety of assays and systems used has, perhaps not surprisingly, led to reports of widely differing splicing rates in vivo. Recently, single molecule RNA-seq has indicated that splicing occurs more quickly than previously deduced. Here we comprehensively review these findings and discuss evidence that splicing and transcription rates are closely coordinated, facilitating the efficiency of gene expression. On the other hand, introduction of splicing delays through as yet unknown mechanisms provide opportunity for regulation. More work is needed to understand how cells optimize the rates of gene expression for a range of biological conditions. WIREs RNA 2017, 8:e1401. doi: 10.1002/wrna.1401 For further resources related to this article, please visit the WIREs website.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.