Abstract

In this paper, we develop the theory of Perelman's $W$-functional on manifolds with isolated conical singularities. In particular, we show that the infimum of $W$-functional over a certain weighted Sobolev space on manifolds with isolated conical singularities is finite, and the minimizer exists, if the scalar curvature satisfies certain condition near the singularities. We also obtain an asymptotic order for the minimizer near the singularities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.