Abstract
Visual performance is heterogeneous at isoeccentric locations; it is better on the horizontal than on the vertical meridian and worse at the upper than at the lower region of the vertical meridian (Carrasco, Talgar, & Cameron, 2001; Talgar & Carrasco, 2002). It is unknown whether these performance inhomogeneities are also present in spatial frequency tasks and whether asymmetries present during encoding of visual information also emerge in visual short-term memory (VSTM) tasks. Here, we investigated the similarity of the perceptual and VSTM tasks in spatial frequency discrimination (Experiments 1 and 2) and perceived spatial frequency (Experiments 3 and 4). We found that (1) performance in both simultaneous (perceptual) and delayed (VSTM) spatial frequency discrimination tasks varies as a function of location; it is better along the horizontal than along the vertical meridian; and (2) perceived spatial frequency in both tasks is higher along the horizontal than along the vertical meridian. These results suggest that perceived spatial frequency may mediate performance differences in VSTM tasks across the visual field, implying that the quality with which we encode information affects VSTM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.