Abstract
Import is activities to enter goods into the territory of a country, both commercial and non-commercial include goods that will be processed domestically. Import is an important requirement for industry in Central Java. The increase in high import values can cause deficit in the trade balance. Appropriate information about the projected amount of imports is needed so that the government can anticipate a high increase in imports through several policies that can be done. The forecasting method that can be used is ARIMA Box-Jenkins. The development of modeling in the field of time series forecasting shows that forecasting accuracy increases if it results from the merging of several models called ensemble ARIMA. The ensemble method used is averaging and stacking. The data used are monthly import value data in Central Java from January 2010 to December 2018. Modeling time series with Box-Jenkins ARIMA produces two significant models, namely ARIMA (2,1,0) and ARIMA (0,1,1). Both models are combined using the ARIMA ensemble averaging and stacking method. The best model chosen from the ARIMA method and ensemble ARIMA based on the least RMSE value is the ARIMA model (2,1,0) with RMSE value of 185,8892 Keywords: Import, ARIMA, ARIMA Ensemble, Stacking, Averaging
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.