Abstract

As the only ribosomally encoded N-substituted amino acid, proline promotes distinct secondary protein structures. The high proline content in collagen, the most abundant protein in the human body, is crucial to forming its hallmark structure: the triple-helix. For over five decades, proline has been considered compulsory for synthetic designs aimed at recapitulating collagen's structure and properties. Here we describe that N-substituted glycines (N-glys), also known as peptoid residues, exhibit a general triple-helical propensity similar to or greater than proline, enabling synthesis of stable triple-helical collagen mimetic peptides (CMPs) with unprecedented side chain diversity. Supported by atomic-resolution crystal structures as well as circular dichroism and computational characterizations spanning over 30 N-gly-containing CMPs, we discovered that N-glys stabilize the triple-helix primarily by sterically preorganizing individual chains into the polyproline-II helix. We demonstrated that N-glys with exotic side chains including a "click"-able alkyne and a photosensitive side chain enable CMPs for functional applications including the spatiotemporal control of cell adhesion and migration. The structural principles uncovered in this study open up opportunities for a new generation of collagen-mimetic therapeutics and materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.