Abstract

Several pattern recognition receptors (PRRs) involved in innate immunity have been identified and characterized in earthworms. Peptidoglycan recognition proteins (PGRPs) are highly conserved PRRs that activate effector pathways such as prophenoloxidase cascade and Toll-like receptor pathway. In addition, PGRPs function as an enzyme, N-acetylmuramoyl-l-alanine amidase (NAMLAA), to directly hydrolyze peptidoglycan. We identified four full-length complementary DNA (cDNA) sequences, Ean-PGRP1/2/3/4, in Eisenia andrei, an earthworm. Sequence and phylogenetic analyses indicate that earthworm PGRP orthologs resemble short PGRP member proteins. The subcellular localizations of four Ean-PGRPs lacking the transmembrane domain are predicted to be extracellular or cytoplasmic. All Ean-PGRPs contain a highly conserved PGRP domain with a conserved Zn2+ binding site including a tyrosine residue essential for active amidase activity. Three highly conserved amino-acid residues (His, Trp, and Thr) necessary for amidase activity are also present, indicating that the Ean-PGRPs can be predicted to have amidase activity. Furthermore, we demonstrate that the Ean-PGRP genes are differentially induced by certain bacterial species, suggesting that the innate immune system of earthworms is likely to be somewhat specific rather than entirely non-specific. Tissue expression patterns indicate that Ean-PGRP mRNAs are primarily expressed in the immune-competent tissues and that their expression is tissue-specific according to Ean-PGRP types, particularly for Ean-PGRP1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.