Abstract

Kin Recognition To maximize fitness, organisms need to be able to recognize their own species, especially in the proximity of closely related individuals. Lightfoot et al. identified a hypervariable small peptide in the predatory nematode Pristionchus pacificus that is involved in species recognition to prevent predation of kin. They induced modifications in the carboxyl terminus of the peptide with a CRISPR-Cas9 system, which showed that this region is necessary for self-recognition. This molecular recognition system appears to prevent cannibalism and thus enables the worm to focus on appropriate prey species. Science , this issue p. [86][1] [1]: /lookup/volpage/364/86?iss=6435

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.