Abstract

To develop a highly efficient strategy against tumors, here, a nanocombination (PDC/P@HCuS) was designed and constructed to actualize chemo-phototherapy with the assistance of fluorescence (FL) and photoacoustic (PA) images. First, a type of organic-inorganic hybrid nanosystem (P@HCuS) was engineered by coupling the fluorescence-labeled amphiphilic fPEDC copolymer on the surface of hollow mesoporous copper sulfidenanoparticle(HCuS), in which HCuS was used as a photothermal and PA agent; fPEDC as a stabilizer, chromophore, and redox/pH-sensitive gatekeeper; and both of them as drug carriers. Then, a peptide-drug conjugate (cRGD-SMCC-DM1, PDC), as a molecular targeted maytansinoid, was loaded inside of P@HCuS to form PDC/P@HCuS. Next, the PDC/P@HCuS was investigated carefully with or without near-infrared (NIR) laser irradiation. In vitro, the nanocombination exhibited stimuli-responsive drug release, obvious cellular uptake, strong cytotoxicity to tumor cells, significant impact on cell cycle, and cytoskeleton and cellular proteomics as well as evident permeability into the tumor sphere, most of which could be boosted by NIR laser irradiation. In vivo, the nanocombinaiton exerted good FL/PA imaging features and photothermal efficiency, achieved the best antitumor efficacy in the presence of NIR laser irradiation, and showed excellent biosafety. Together, it demonstrated that the PDC/P@HCuS, representing a chemo-phototherapy based on a nanocombination associated with peptide-drug conjugate, could achieve the highly efficient antitumor effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.