Abstract

BackgroundAtherosclerosis is considered a progressive disease that affects arteries that bring blood to the heart, to the brain and to the lower end. It derives from endothelial dysfunction and inflammation, which play an important role in the thrombotic complications of atherosclerosis. Cardiovascular disease is the leading cause of death around the world and one factor that can contribute to its progression and prevention is diet. Our previous study found that amaranth hydrolysates inhibited LPS-induced inflammation in human and mouse macrophages by preventing activation of NF-κB signaling. Furthermore, extrusion improved the anti-inflammatory effect of amaranth protein hydrolysates in both cell lines, probably attributed to the production of bioactive peptides during processing. Therefore, the objective of this study was to compare the anti-atherosclerotic potential of pepsin-pancreatin hydrolysates from unprocessed and extruded amaranth in THP-1 lipopolysaccharide-induced human macrophages and suggest the mechanism of action.ResultsUnprocessed amaranth hydrolysate (UAH) and extruded amaranth hydrolysate (EAH) showed a significant reduction in the expression of interleukin-4 (IL-4) (69% and 100%, respectively), interleukin-6 (IL-6) (64% and 52%, respectively), interleukin-22 (IL-22) (55% and 70%, respectively). Likewise, UAH and EAH showed a reduction in the expression of monocyte-chemo attractant protein-1 (MCP-1) (35% and 42%, respectively), transferrin receptor-1 (TfR-1) (48% and 61%, respectively), granulocyte-macrophage colony-stimulating factor (GM-CSF) (59% and 63%, respectively), and tumor necrosis factor-α (TNF-α) (60% and 63%, respectively). Also, EAH reduced the expression of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) (27%), intracellular adhesion molecule-1 (ICAM-1) (28%) and matrix metalloproteinase-9 (MMP-9) (19%), important molecular markers in the atherosclerosis pathway. EAH, led to a reduction of 58, 52 and 79% for LOX-1, ICAM-1 and MMP-9, respectively, by confocal microscopy.ConclusionsExtruded amaranth hydrolysate showed potential anti-atherosclerotic effect in LPS-induced THP-1 human macrophage-like cells by reducing the expression of proteins associated with LOX-1 signaling pathway.

Highlights

  • Atherosclerosis is considered a progressive disease that affects arteries that bring blood to the heart, to the brain and to the lower end

  • This table highlights the high and significant reduction by both protein hydrolysates on Transforming growth factor-α (TGF-α) which is associated with atherosclerosis; on IL-4, associated with the secretion of Transforming growth factor-β (TGF-β); and on the reduction of IL-32α/β/γ, a cytokine that activates nuclear factor-κB (NF-κB)

  • Unprocessed amaranth hydrolysate (UAH) and extruded amaranth hydrolysate (EAH) showed a significant (p < 0.05) reduction of 69% and 100% for IL-4; 64% and 52% for IL-6; 55% and 70% for IL-22; 100% and 51% for IL-12p70, respectively

Read more

Summary

Introduction

Atherosclerosis is considered a progressive disease that affects arteries that bring blood to the heart, to the brain and to the lower end. It derives from endothelial dysfunction and inflammation, which play an important role in the thrombotic complications of atherosclerosis. Cardiovascular disease is the leading cause of death around the world and one factor that can contribute to its progression and prevention is diet. Our previous study found that amaranth hydrolysates inhibited LPS-induced inflammation in human and mouse macrophages by preventing activation of NF-κB signaling. Atherosclerosis mainly affects the arteries that bring blood to the heart (coronaries), to the brain (carotid, cerebral and vertebral) and to the lower end (iliac and femoral) [12]. Fissure or rupture of the plaque occurs, it leads to the thrombus formation, causing complications such as cerebrovascular disease, heart disease or peripheral arterial disease [13]

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.