Abstract
An accurate effort and cost estimation provides good management for software projects. Less accurate estimation will affect the management of the software project and cause the ineffectiveness of the project development process. The addition of cost driver, introduced by Barry Boehm in 2000, is used in this paper to provide better accuracy, because it has covered the entire section in the estimation. However, in this paper, the accuracy of effort and cost estimation by COCOMO II Fuzzy Gaussian method is still far from actual effort. Therefore, the accuracy can still be increased using Bee Colony Optimization (BCO), as seen in the MMRE loyal results. The value of parameter A and B on COCOMO II is also changed with the initial gradual of 0.01 to give optimal value on a certain gradual. Based on the result of the implementation, the error accuracy of effort estimation and software project cost is reduced by 38%, compared to previous research. In conclusion, the proposed method can increase the accuracy of effort and cost estimation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Jurnal Nasional Teknik Elektro dan Teknologi Informasi (JNTETI)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.