Abstract

ABSTRACTFungi are known to be affected by external environmental stimuli, resulting in different stress response effects, which in turn could be used to enhance its biodegrading ability. In a previous study, ethanol was used to manipulate cell–cell and cell–surface interaction to prevent cell loss and maximize the usage of Penicillium purpurogenum cells in the media, a correlation was drawn between ethanol oxidative stress, surface-bound proteins and fungal adhesion. The present study focuses on a more detailed study of the effect of ethanol on the same fungus. The results show that the presence of Yap1p gene and the detection of an oxidized form of glutathione (GSSG) suggest that a stress response might be involved in the adhesion process. The process of adhesion could be described as a signaling process and it is affected by the germ tube formation as an initial step in adhesion. Protein profile showed polymorphism in surface-bound proteins for cultures amended with ethanol when compared to control cultures. Ethanol also affected the DNA polymorphic profile of DNA, rendering the fungus genetically variable. P. purpurogenum produced phenol oxidase enzyme and could be used to degrade total phenols in olive mill waste water without the formation of biofilm on the surface of the containers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.