Abstract
ObjectiveDetermining the mechanisms that modulate β-lactam resistance in clinical Pseudomonas aeruginosa (P. aeruginosa) isolates can be challenging, as the molecular profiles identified in mutation-based or expression-based resistance determinant screens may not correlate with in vitro phenotypes. One of the lesser studied resistance mechanisms in P. aeruginosa is the modification of penicillin-binding protein 3 (pbpB/ftsI). This study reported that nonsynonymous polymorphisms within pbpB frequently occur among β-lactam resistant sputum isolates, and are associated with unique antibiotic susceptibility patterns. MethodsLongitudinally collected isolates (n = 126) from cystic fibrosis (CF) patients with or without recent β-lactam therapy or of non-clinical origin were tested for susceptibility to six β-lactams (aztreonam, ceftazidime, cefsulodin, cefepime, meropenem, and piperacillin). Known β-lactam resistance mechanisms were characterised by polymerase chain reaction (PCR)-based methods, and polymorphisms in the transpeptidase-encoding domain of pbpB identified by sequencing. ResultsTwelve nonsynonymous polymorphisms were detected among 86 isolates (67%) from five CF patients with a history of β-lactam therapy, compared with one polymorphism in 30 (3.3%) from three patients who had not received β-lactam treatments. No nonsynonymous polymorphisms were found in ten environmental isolates. Multiple pbpB alleles, often with different combinations of polymorphisms, were detected within the population of strains from each CF patient for up to 2.6 years. Traditional patterns of ampC or mexA de-repression reduced expression of oprD or the presence of extended-spectrum β-lactamases were not observed in resistant isolates with nonsynonymous polymorphisms in pbpB. ConclusionThis study's findings suggest that pbpB is a common adaptive target, and may contribute to the development of β-lactam resistance in P. aeruginosa.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.