Abstract

Penetration of Escherichia coli O157:H7 into iceberg lettuce tissues and the effect of chlorine treatment on cell viability were evaluated. Attachment of different inoculum levels (109, 108, and 107 CFU/ml) was examined by determining the number of cells at the surface and the cut edge of lettuce leaves (2 by 2 cm). E. coli O157:H7 attached preferentially to cut edges at all inoculum levels, with greater attachment per cm2 of lettuce at higher inoculum levels. A longer attachment time allowed more cells to attach at both sites. Immunostaining with a fluorescein isothiocyanate–labeled antibody revealed that cells penetrated into lettuce leaves from cut edges. Cells showed greater penetration when lettuce was held at 4°C compared with 7, 25, or 37°C and were detected at an average of 73.5 ± 16.0μm below the surfaces of cut tissues. Penetrating cells were mostly found at the junction of lettuce cells. The viability of attached cells after treatment with 200 mg/liter (200 ppm) of free chlorine for 5 min was examined by plating on tryptic soy agar and by a nalidixic acid elongation method. Although chlorine treatment caused significant reduction in attachment (0.7- and 1.0-log reduction at surfaces and cut edges, respectively), cells remained attached at high numbers (7.9 and 8.1 log CFU/cm2 at surfaces and cut edges, respectively). Elongated cells were observed in stomata and within the tissues of the lettuce, indicating they were protected from contact with chlorine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.