Abstract

A novel siRNA delivery vector has been developed, based on the self-assembly of monosubstituted cationic β-CD derivatives with a poly(vinyl alcohol)MW27kD (PVA) main-chain polymer bearing poly(ethylene glycol)MW2000 (PEG) and acid-labile cholesterol-modified (Chol) grafts through an acid-sensitive benzylidene acetal linkage. These components were investigated for their ability to form nanoparticles with siRNA using two different assembly schemes, involving either precomplexation of the pendant Chol-PVA-PEG polymer with the cationic β-CD derivatives before siRNA condensation or siRNA condensation with the cationic β-CD derivatives prior to addition of Chol-PVA-PEG to engage host:guest complexation. The pendant polymer:amino-β-CD:siRNA complexes were shown to form nanoparticles in the size range of 120-170 nm, with a slightly negative zeta potential. Cell viability studies in CHO-GFP cells shows that these materials have 10(3)-fold lower cytotoxicities than 25 kD bPEI, while maintaining gene-silencing efficiencies that are comparable to those of benchmark transfection reagents such as bPEI and Lipofectamine 2000. These results suggest that the degradable Chol-PVA-PEG polymer is able to self-assemble in the presence of siRNA and cationic-β-CD to form nanoparticles that are an effective and low-toxicity vehicle for delivering siRNA cargo to target cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.