Abstract

ABSTRACTLamin B Receptor (LBR) is an inner nuclear membrane protein associated with the rare human diseases Pelger-Huët anomaly and Greenberg skeletal dysplasia. A new study has used CRISPR/Cas9-mediated genetic manipulations in a human cell system to determine that the molecular etiology of these previously poorly understood disorders is a defect in cholesterol synthesis due to loss of LBR-associated sterol C14 reductase activity. The study furthermore determined that disease-associated LBR point mutations reduce sterol C14 reductase activity by decreasing the affinity of LBR for the reducing agent NADPH. Moreover, two disease-associated LBR truncation mutants were found to be highly unstable at the protein level and are rapidly turned over by a novel nuclear membrane-based protein quality control pathway. Thus, truncated LBR variants can now be used as model substrates for further investigations of nuclear protein quality control to uncover possible implications for other disease-associated nuclear envelopathies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.