Abstract

Here we show that an NH-π interaction between a highly conserved Asn and a nearby Trp stabilizes the WW domain of the human protein Pin1. The strength of this NH-π interaction depends on the structure of the arene, with NH-π interactions involving Trp or naphthylalanine being substantially more stabilizing than those involving Tyr or Phe. Calculations suggest arene size and polarizability are key structural determinants of NH-π interaction strength. Methylation or PEGylation of the Asn side-chain amide nitrogen each strengthens the associated NH-π interaction, though likely for different reasons. We hypothesize that methylation introduces steric clashes that destabilize conformations in which the NH-π interaction is not possible, whereas PEGylation strengthens the NH-π interaction via localized desolvation of the protein surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.