Abstract
This paper presents a model for transactive energy management within microgrids (MGs) that include smart homes and buildings. The model focuses on peer-to-peer (P2P) transactive energy management among these homes, establishing a collaborative use of a cloud energy storage system (CESS) to reduce daily energy costs for both smart homes and MGs. This research assesses how smart homes and buildings can effectively utilize CESS while implementing P2P transactive energy management. Additionally, it explores the potential of a solar rooftop parking lot facility that offers charging and discharging services for plug-in electric vehicles (PEVs) within the MG. Controllable and non-controllable appliances, along with air conditioning (AC) systems, are managed by a home energy management (HEM) system to optimize energy interactions within daily scheduling. A linear mathematical framework is developed across three scenarios and solved using General Algebraic Modeling System (GAMS 24.1.2) software for optimization. The developed model investigates the operational impacts and optimization opportunities of CESS within smart homes and MGs. It also develops a transactive energy framework in a P2P energy trading market embedded with CESS and analyzes the cost-effectiveness and arbitrage driven by CESS integration. The results of the comparative analysis reveal that integrating CESS within the P2P transactive framework not only opens up further technical opportunities but also significantly reduces MG energy costs from $55.01 to $48.64, achieving an 11.57% improvement. Results are further discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.