Abstract

Quasi-static peeling of a horizontal elastica (the tape) from another horizontal elastica (the beam) supported by a pinned end and a roller end is analyzed. Bending resistance is assumed to dominate the behavior, and large deflections and rotations are allowed. The tape is shorter than the beam and is pulled upward at a constant angle with the horizontal. A transversality (debonding) condition is derived for peeling, based on the common fracture mechanics approach. Displacement control is considered. The associated force exhibits its peak value at the onset of peeling. The vertical deflection of the pulled end of the tape also is of interest, especially when the tape detaches from the beam. Equilibrium curves are determined, and the effects of the following parameters on the peak force and the detachment deflection are investigated: the relative thicknesses and moduli of elasticity of the tape and the beam; the relative lengths of the tape and the beam; the angle of pulling; and the nondimensional work of adhesion. The system may be used as a model of peeling bandages, medical patches, biosensors, and other wearable devices from skin. Other possible thin flexible substrates include fabric, paper, leather, rubber, and plastics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.