Abstract

Abstract The effectiveness of using infrared (IR) dry-peeling as an alternative process for peeling tomatoes without lye and water was studied. Compared to conventional lye peeling, IR dry-peeling using 30 s to 75 s heating time resulted in lower peeling loss (8.3%–13.2% vs. 12.9%–15.8%), thinner thickness of peeled-off skin (0.39–0.91 mm vs. 0.38–1.06 mm), and slightly firmer texture of peeled products (10.30–19.72 N vs. 9.42–13.73 N) while achieving a similar ease of peeling. IR heating increased the Young's Modulus of tomato peels and reduced the peel adhesiveness, indicating the tomato peels to loosen, become brittle, and crack more easily. Also, IR heating resulted in melting of cuticular membrane, collapse of several cellular layers, and severe degradation of cell wall structures, which in turn caused peel separation. These findings demonstrated the effectiveness of the novel IR dry-peeling process for tomatoes. Industrial relevance Development of a sustainable and non-chemical peeling technique for food processing industry is urgent. Currently, industrialized peeling methods such as hot lye or steam peeling are water- and energy-intensive operation and result in a large amount of waste effluent. Disposal of these wastewater containing high salinity and organic solids poses negative environmental footprints. Tomato processors have long been interested in pursuing a sustainable and non7 chemical peeling alternative in order to minimize waste effluent containing high salinity and organic loads and reduce the negative environmental impacts associated with conventional hot lye peeling. The emerging infrared dry-peeling technique offers a novel approach to eliminate the usage of chemicals and water in the peeling process while maintaining high quality peeled products. The study explored several crucial and fundamental aspects of developing infrared radiation heating technology as a sustainable tomato peeling method. The findings of this research provide scientific evidence of the benefits of infrared dry-peeling in comparison to the conventional hot lye peeling and have been used for the development of a pilot scale tomato infrared dry-peeling system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.