Abstract

To assess the pedoecological effects of a 23-year old poplar (Populus simonii Carr.) forest on soil amelioration and vegetation restoration via soil erosion reduction and atmospheric dust retention in a desertified sandy land ecosystem, daily dynamics of wind speed, sand transport and dust deposition rates were monitored over an erosive period from April through June in 2001, using fixed observation sites located at different positions within and around the forest. Soil and vegetation characteristics at these sites were also measured. The observation sites were placed at distances of 15H (as control), 6H and 3H (H is mean tree height) from the forest edge of the windward side (abbreviated CK, 6H-W and 3H-W respectively), forest center (FC), and at distances of 0H, 6H and 8H from the forest edge of the leeward side (FE-L, 6H-L and 8H-L respectively). Daily mean wind speed was significantly lower in different observation sites than CK, with FC having the greatest reduction of wind speed and 6H-W the least reduction. Daily transport rate of sand by wind was also significantly lower in different observation sites than CK, with FE-L having the greatest reduction of wind erosion and 6H-W the least reduction. The fact that the poplar forest will lose its functions against wind at a distance of about 12-fold tree height from the forest edge of the leeward side suggests that the effective wind-preventing range of the poplar forest is about 150 m. There was marked spatial and seasonal distribution of dust-fall rate. Over space, the rate of dust-fall was much greater within the forest than outside the forest. Over time, the daily dust deposition rate was greatest in April, followed in decreasing order by May, June, July, September and August, closely linked to the seasonal distribution pattern of dust storm. Significant positive changes in soil and vegetation parameters of the different observation sites during the 23 years that the poplar forest was established suggest the perceptible pedoecological effects of the poplar forest on soil development and restorative succession of plant community within its immediate vicinity through windbreak, soil erosion reduction and atmospheric dust retention. Understanding these pedoecological effects may aid in the design of protective forest systems in arid and semi-arid areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.