Abstract

One distinctive outcome of interstitial lung diseases in childhood is the abnormal accumulation of pulmonary extracellular matrix. The clinical consequence of such excessive connective tissue accumulation is known as pulmonary fibrosis. While numerous aspects of its pathogenesis have become familiar, many key events involved in its inception and progression still remain unclear. There is now compelling evidence that lung damage due to uncontrolled proteolysis may help drive critical processes that regulate fibrotic matrix remodeling. In this regard, a number of proteinases have been implicated in promoting both the initial lung injury and the fibroproliferative repair that follows. This review summarizes the knowledge of how different matrix-targeting enzymes may act to influence the development of pediatric pulmonary fibrosis. Understanding the scientific basis of this complex process may highlight opportunities to limit unwanted proteolysis and the intensity of its fibrotic sequelae.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.