Abstract

The peculiarities of supersonic unsteady flows forming in the processes of an impulse starting of a wind tunnel including a fore-chamber, a nozzle, a diffuser, and an exhaust tank are considered. The fore-chamber is separated from the flow duct by a thin breakable diaphragm. Before the wind tunnel starting, the gas contained in the exhaust tank is pumped out down to a very small pressure, and then the high-pressured working gas is fed into the fore-chamber. Upon reaching some value of this pressure, the diaphragm “instantaneously” ruptures, and the working gas starts exhausting through the nozzle: a rapid unsteady process of the wind tunnel starting arises. The numerical simulation of the flows forming at the impulse starting of the simplest experimental gas-dynamic facility has been carried out; the facility is arranged with a nozzle forming at its exit a two-dimensional supersonic flow with the Mach number of 2.9, and with replaceable diffusers having different relative areas of the throat. The numerical computations of two-dimensional unsteady flows have been carried out using the Reynolds-averaged Navier—Stokes equations and the SST k-ω turbulence model. The flow patterns computed numerically are compared with the data of the optical visualization of the flow obtained in the experimental gas-dynamic facility in the process of its starting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.