Abstract

The method of mass spectrometric studies was used to study the fragmentation of glucose in the gas phase upon collision with low-energy electrons (20-70 eV) before and after irradiation at the M-30 microtron (12.5 MeV) with doses of 14 and 164 kGy. The dose dependence of the transformation of glucose mass spectra was established. The results indicate the dominance in mass spectra of symmetric fission channels of the molecule itself and its fragments formed under the action of M-30 microtron radiation. The same ways of fragmentation of glucose one can expect under chemical, thermal, and biological processes at the cellular level. The dominant channels of fragmentizing the glucose molecule without and considering its radiation treatment are explained within the framework of the method of structural combinations. The obtained results are essential for understanding the processes of cellular biochemistry and biophysics involving glucose, the hierarchy of its fragmentation channels under the influence of terrestrial radiation factors, and metabolic processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.