Abstract
The pectoral fin propulsion of a bionic robotic fish always consists of two phases: propulsion and recovery. The robotic fish moves in a burst-and-coast swimming manner. This study aims to analyze a pair of bionic robotic fish with rigid pectoral fin propulsion with three degrees of freedom and optimize the elliptical propulsion curve with the minimum recovery stroke resistance using computational fluid dynamics methods. Then, the time allocated to the propulsion and recovery phases is investigated to maximize the propulsion performance of the bionic robotic fish. The numerical simulation results show that when the time ratio of the propulsion and recovery phases is 0.5:1, the resistance during the movement of the robotic fish is effectively reduced, and the drag-reducing effect is pronounced. According to a further analysis of pressure clouds and vortex structures, the pressure difference between the upstream and downstream fins of the pectoral fin varies with different stroke ratios. The increase in recovery phase time helps to prevent premature damage to the vortex ring structure generated during the propulsion process and improves propulsion efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.